Anoka-Hennepin Secondary Curriculum Unit Plan

Department:	Mathematics	Course:	AP Calculus BC	Unit 2 Title:	Polynomial Approximations and Series	Grade Level(s):	10-12
Assessed Trimester:	Trimester A	Pacing:	12-18 days	Date Created:	2/2/2010	Last Revision Date:	6/19/2014

Course Understandings: *Students will understand that:*

- A. The meaning of limit represents function behavior.
- B. The meaning of the derivative represents a rate of change and is a local linear approximation and should understand that derivatives can be used to solve a variety of problems.
- C. The meaning of the definite integral is a limit of Riemann sums and as the net accumulation of change and will understand that you can use integrals to solve a variety of problems.
- D. The relationship between the derivative and the definite integral as expressed in both parts of the Fundamental Theorem of Calculus.
- E. You can model a written description of a physical situation with a function, a differential equation, or an integral.
- F. You can use technology to help solve problems, experiment, interpret results, and support conclusions.
- G. A polynomial series can be used to model functions and make approximations.
- H. The analysis of planar curves can be done using the calculus of parametric, vector, and polar forms.

DESIRED RESULTS (Stage 1) - WHAT WE WANT STUDENT TO KNOW AND BE ABLE TO DO?

Established Goals
ocal/College Board/Technology Standard(s) addressed:
nomial Approximations and Series
ept of series
A series is defined as a sequence of partial sums, and convergence is defined in terms of the limit of the sequence of partial sums. Technology ca
s of constants
Motivating examples, including decimal expansion
Geometric series with applications
The harmonic series
Alternating series with error bound
Terms of series as areas of rectangles and their relationship to improper integrals, including the integral test and its use in testing the convergence
The ratio test for convergence and divergence
Comparing series to test for convergence or divergence
er series
Taylor polynomial approximation with graphical demonstration of convergence (for example, viewing graphs of various Taylor polynomials of the sin
Maclaurin series and the general Taylor series centered at $x = a$
Maclaurin series for the functions e^x , sinx, cosx, and $\frac{1}{1-x}$
Formal manipulation of Taylor series and shortcuts to computing Taylor series, including substitution, differentiation, antidifferentiation, and the form
Functions defined by power series
Radius and interval of convergence of power series
Lagrange error bound for Taylor polynomials
Transfer

an be used to explore convergence and divergence.

of *p*-series

ne function approximating the sine curve)

mation of new series from known series

	Meaning		
Unit Understanding(s):	Essential Qu		
 Students will understand that: The concept of a series, including geometric, Taylor, and Maclaurin series. Several tests for convergence and divergence. 	 Students will keep considering: Can any function be represented by a polynomial? What does it mean for a series to converge or dive How many tests for convergence and divergence an		

Acquisition

Knowledge - Students will:	Skills - Students will:
Convergence tests	BC2-1: Determine convergence/divergence of
Taylor, Maclaurin, and Power Series	BC2-2: Create Taylor, Maclaurin, and Power set
• Error	BC2-3: Calculate an error in using a polynomia
Interval of Convergence	 BC2-4: Find the sum of an infinite series
Radius of Convergence	BC2-5: Find an interval of convergence/radius
Infinite Series	 BC2-6: Integrate/Differentiate an infinite series
Sum of a geometric series	
Reasoning - Students will:	
Distinguish which convergence test is appropriate	
Verify that Taylor, Maclaurin, and Power series models a certain function within an interval of	
convergence	
Determine if error is within a certain bound	
 Analyze circumstances for which an infinite series will have a finite sum 	
Evaluate approximation accuracy	
Compare/Contrast the relationship between functions and series using integration and differentiation	

Common Misunderstandings	Essential new vocabulary	
 Students have trouble calculating the coefficients of Taylor Polynomials (failure to divide by the factorial) Students confuse a Taylor Polynomial centered at 0 and not at 0 Students have trouble with calculating actual error vs. using error estimation techniques 	ConvergenceDivergenceHarmonic Series	 LaGrange Error Bound Maclaurin P-Series

uestion(s):	
-------------	--

? /erge? are there?

f a series using the appropriate test series to model functions al to approximate a function

of convergence

Truncation errorTaylor Series